* Step 1: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
            cond(true(),y) -> y
        - Signature:
            {admit/2,cond/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit,cond} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
          admit#(x,nil()) -> c_2()
          cond#(true(),y) -> c_3()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
            admit#(x,nil()) -> c_2()
            cond#(true(),y) -> c_3()
        - Strict TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
            cond(true(),y) -> y
        - Signature:
            {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
          admit(x,nil()) -> nil()
          admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
          admit#(x,nil()) -> c_2()
          cond#(true(),y) -> c_3()
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
            admit#(x,nil()) -> c_2()
            cond#(true(),y) -> c_3()
        - Strict TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
        - Signature:
            {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(.) = {2},
            uargs(cond) = {2},
            uargs(cond#) = {2},
            uargs(c_1) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                 p(.) = [1] x1 + [1] x2 + [0]         
                 p(=) = [0]                           
             p(admit) = [4] x1 + [6] x2 + [1]         
             p(carry) = [2]                           
              p(cond) = [1] x2 + [0]                  
               p(nil) = [0]                           
               p(sum) = [1] x1 + [1] x2 + [1] x3 + [0]
              p(true) = [0]                           
                 p(w) = [2]                           
            p(admit#) = [1] x1 + [6] x2 + [0]         
             p(cond#) = [1] x2 + [0]                  
               p(c_1) = [1] x1 + [2]                  
               p(c_2) = [0]                           
               p(c_3) = [0]                           
          
          Following rules are strictly oriented:
          admit(x,.(u,.(v,.(w(),z)))) = [6] u + [6] v + [4] x + [6] z + [13]                          
                                      > [1] u + [1] v + [6] z + [11]                                  
                                      = cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
          
                       admit(x,nil()) = [4] x + [1]                                                   
                                      > [0]                                                           
                                      = nil()                                                         
          
          
          Following rules are (at-least) weakly oriented:
          admit#(x,.(u,.(v,.(w(),z)))) =  [6] u + [6] v + [1] x + [6] z + [12]                                
                                       >= [1] u + [1] v + [6] z + [13]                                        
                                       =  c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
          
                       admit#(x,nil()) =  [1] x + [0]                                                         
                                       >= [0]                                                                 
                                       =  c_2()                                                               
          
                       cond#(true(),y) =  [1] y + [0]                                                         
                                       >= [0]                                                                 
                                       =  c_3()                                                               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
            admit#(x,nil()) -> c_2()
            cond#(true(),y) -> c_3()
        - Weak TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
        - Signature:
            {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3}
        by application of
          Pre({1,2,3}) = {}.
        Here rules are labelled as follows:
          1: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
          2: admit#(x,nil()) -> c_2()
          3: cond#(true(),y) -> c_3()
* Step 5: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
            admit#(x,nil()) -> c_2()
            cond#(true(),y) -> c_3()
        - Weak TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
        - Signature:
            {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
             
          
          2:W:admit#(x,nil()) -> c_2()
             
          
          3:W:cond#(true(),y) -> c_3()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: cond#(true(),y) -> c_3()
          2: admit#(x,nil()) -> c_2()
          1: admit#(x,.(u,.(v,.(w(),z)))) -> c_1(cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z))))))
* Step 6: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
            admit(x,nil()) -> nil()
        - Signature:
            {admit/2,cond/2,admit#/2,cond#/2} / {./2,=/2,carry/3,nil/0,sum/3,true/0,w/0,c_1/1,c_2/0,c_3/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {admit#,cond#} and constructors {.,=,carry,nil,sum,true,w}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))